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A PROPOSITIONAL LOGIC WITH SUBJUNCTIVE CONDITIONALS
R, B. ANGELL

In this paper a formalized logic of propositions, Pay, is presented. It is
proven consistent and its relationships to traditional logic, to PM ([15]),
to subjunctive (including contrary-to-fact) implication and to the “para-
doxes” of material and strict implication are developed. Apart from any
intrinsic merit it possesses, its chief significance lies in demonstrating the
feasibility of a general logic containing the principle of subjunctive contrariety,
i.e., the principle that ‘If  were true then ¢ would be true’ and ‘If p were
true then ¢ would be false’ are incompatible.

1. Introduction. The logistic system Al — in Section 2 below — was
developed under the following objective: to construct a formalized logic of
propositions, P4, which would satisfy the following requirements:

(1) Pa would contain all the theorems of PM’s propositional calculus,
with the proviso that

(2) The sign ‘D’ would not be interpreted as “if ... then ...” in P,,
but only as an abbreviation of expressions containing ‘and’ and ‘not,’
or of expressions containing ‘or’ and ‘not,” or of expressions containing
stroke functions.

(3) The expression “if ... then ..."” would be assigned as the interpre-
tation of a primitive symbol ‘-,

(4) As many as possible of the traditional principles of propositional
logic — e.g., affirming the antecedent, denying the consequent, dilemmas,
etc., as well as principles of immediate inference like double negation,
transposition, etc. — would be expressed by theorems of P, with ‘=’
representing appropriate conditional components.

(5) The so-called “paradoxes of material implication” and “‘paradoxes
of strict implication” would be provably excluded and without analogues
among the hypothetical theorems of Py.

(6) P4 would include as theorems a class of principles involving “if . ..
then ...” which, though not theorems in PM and equivalent systems,
could plausibly lay claim to logical truth for subjunctive conditionals —
e.g., “It is false that if p were true then p would be false” and “It is false
that both if p were true ¢ would be true and if p were true ¢ would be false.”

(7) Pa would be provably consistent in the sense that not both S and —S
would be derivable as theorems.

The purpose of this paper is to investigate the extent to which the
formalized calculus of propositions, P4, meets the requirements laid down
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for Pa. Section 2 below outlines the formal calculus, Al, gives a proof of
its consistency, and provides semantic rules which make it a formalized
logic of propositions, P4y ; these pertain to requirements (2), (3), and (7).
Section 3 deals with the fourth requirement, showing the derivability in
P41 of principles of traditional propositional logic. Section 4 proves that
the theorems of PM’s propositional calculus are contained in Pa; (though
with a restriction on their interpretation), thus satisfying requirement (1).
Section 5 shows the derivation of a class of new principles (requirement (6))
compatible with subjunctive conditionality but sometimes incompatible
with the “if ... then ...”” of most preceding systems. Section 6 establishes
the absence of “paradoxes’ of strict or material implication and the absence
of analogues of these “‘paradoxes” for ‘—’, thus meeting requirement (5).
In Section 7 we discuss certain residual problems relating to whether Pa;
includes either too much, or too little, in its class of derivable formulas.

2, The consistency of P,, and its interpretation. The logistic
system, Al, has the following elements and rules:

I. Primitive Symbols
1) Grouping devices: ( )
2) Constants: —, ., -
3) Variables: ¢, ¢, 7, s, 1, 91, 71, - . -

II. Rules of Formation
F;. A single variable by itself is a wif.
Fgo. If any formula S is a wif, then —S is a wif.
Fa. If S and S’ are wifs, then (5.5') is a wif.
F4. If S and §' are wffs, then (S — S') is a wif.

III. Abbreviations
Dy, (Sv§)=df—(—5.-58)
Dy, (SOS)=df —(5.—5")
Ds. (§=8)=4df((§25).(829))

IV. Primitive Formulas
Al (g2 > (p—>9 >@B—>r)

As. ((p—>q) > ((r.9) >(g.7)

As. ((p >—(g.7) > ((g-p) >—7)
As ((B-(g.7) > (q-(B-7))

As. (p—>—9) —>(g—>—P)

Ag. (——pP—>9)

A7 ((p—>q9) > —(p-—9)

As. —((p.9)-—2)
Ag. —(p.—(p-9))
As. (P> >—(@—>—19)
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V. Rules of Transformation
R;. IfFSand F (S —>9'), then S,
Re. If FSand k&', then F(S.S).
Rs. If k5 and if v is a propositional variable occurring in S, then if §’
is got by replacing all occurrences of v in S by any wif, T, then I S,
R4 If S and §' is got by replacing any part, or all, of S by an ex-
pression equivalent through rules of abbreviation, then S,

The consistency of this system is established by the following matrices:

— P (p.99|0123 p—->¢)|0123
30 01032 0]1232
21 110123 1{2123
1 2 23232 21212
03 312323 3{2121

The values O and 1 are designated values. Each primitive formula takes a
designated value under every possible assignment of values to its variables.
Rules of transformation preserve this property in all derived formulas: this
is established for R; and Rz by consideration of the matrices above, and for
R3 and R4 by virtue of the same considerations which show that these rules
of transformation preserve tautology in standard propositional calculi.

The purely formal system, A1, becomes a formalized logic of propositions
P41, when it is supplemented by the following semantic rules which give
an interpretation to its primitive symbols and so by implication to all its
symbols: 1) the variables , g, etc., shall be taken as propositional variables
having propositions as values, 2) the constant, ‘—’ shall be interpreted
as “it is false that ...”, 3) the constant ‘.’ shall be interpreted as “and,”
4) the constant ‘~’ shall be interpreted as “if ... then ....".

With these interpretations, we now speak of Abbreviations of Al, as
Definitions in P,;; Primitive Formulas of Al as the Axioms, Aj to Ay,
of Pay; and Rules of Transformation of Al as the Rules of Inference in the
propositional logic, Paj.

3. Derivation of traditional principles of logic. In this section
we show the derivability of a sufficient number of traditional principles of
logic to satisfy the demand that traditional logic be incorporated in the
axiomatization. Since we can not move from —(p.—gq) or (—pvyg) to
(p - ¢), the derivation of principles involving “if ... then ...” in this
logic must often follow different paths from those available in PM. For
this reason, proofs are given in detail,

First we derive the converse of Axiom 6, thus establishing both principles
of Double Negation:

1 (===t >—p) [Ae p/—2]
2 p>————p) [*1, As p/———p., q/p; Ru]
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B (=P >——D) [Ag p/——1]
4 (p>————p)>(p>——1) ['3 A1g/[————p,7/[——p;Ri]
Bo(p—>——1) [*2, "4, Ra].
Next, we establish F (p — #):
6 ((p > ——p) > (b)) [Ae, A1g/——p, 7/p; Ri]
7T (p—>9p) [*5, *6; Ril.

The next eleven proofs establish, among others, the three principles *13,
*15, and *19 which, with Aj, constitute the Laws of Transposition:

8 ((g—>——2)—>(@—2) [As, A1 g/——p, 7/p, plg; Ra]
9 ((g—=p) —>(@—>——2) [*5, A1 g/p, r/——2, plg; Ril
10 ((—p —>—q) ~>(g—>——2) [As, p/—2]
11 ((g>——p) > (—p—>—9) (As, p/q, g/ —2)
12 (((p—=>—9) = g—>——2) > ((—p—>—9) = (g—=>2)

'8, A1q/(g = ——2),7/(g — p), p/(—P — —9q); R4l
13 ((—p——q9 ~(g—>2) [*10, *12; Ry]
14 (=P~ @g—>—2)~>(g—=2) > (=P —>—9))

(11, A19/(g = ——2),7/(—p > —4), /(g ~#); R1]
15 (g —~p) —~>(—p——9) [*9, *14; Ry]
16 ((—g—p) > (—p>——9) [*15 ¢/—q]
17 ((—p—>——9) = (—p—>9) [*8 g/—», #/q]
18 (((—g~=>p) > (—p—=——9) > (—g—=>p) > (=P —>9))

(*17, A1g/(—=p = ——q), 7/(—P =), p/(—g > P, R4]
19 ((—g—=>p) > (—p—>9) [*16, *18; Ry]

Principles of Commutation, or Permutation, for conjunction and disjunction
follow:

20 ((g-9) —> (2-9) ['7, Az q/p, 7/g; Ri]

21 (—=(p.9) > —(2-7) [*20, *15 9/(g-9), #/(p-9); Ral-
Next we derive the traditional principle of Denying the Disjunct:

22 (—(p.q) > —(?-9) ['7 p/—(#.9)]

2B (- —-9) >—9 (*22, As p/—(p-9), 9/p, 7/9; Ra].

And from this, by obvious steps, we can get various forms of Denying the
Alternant. Neither the latter nor *23, it should be noted, are derivable as
theorems in Ackermann’s system of strenge Implikation [[1], [2]].

Next we get

24 (p.(p—>9) > ——9 [Az, As p/(Pp —q). q/p, v/ —¢; Ra],

from which, by *8, we get Affirming the Antecedent, and thereby any of the
traditional variations of valid Mixed Hypothetical Syllogisms.
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The Principle of Pure Hypothetical Syllogisms in A; can be supplemented

by a second form of that principle, F((p ->g) - ((g »7) - (p — 7))

s

which is derived below using only A; and principles of transposition:

*25
*26
*27
*28
*29
*30

*31

*32
*33
*34
*35
*36
*37

*38

*39
*40

*4]
*42

*43

(=g —>—=9) > ((—7 > —9) > (—r > —p))) [A19/—q, v/—p, p|—7]

((p—>q) > (—g—>—1)) (15 ¢/p, p/q]

(p —9) > (=g >—=p) > ((p >q) > (—7 > —q) = (—7 > —p))))
[*25, A1 g/(—g = —p), 7/((—7 = —q) = (—r = —p)), p/(p —q); Ri]

(6> > (—7—=—q) > (—7 > —2)) (26, *27; Ry]
((—7 = —p) = (p >7) [*13 p/r, q/p]
(=7 > —g) > (=7 = —p)) > ((—7r = —q) = (p —7)))

["29, A1 g/(—7 — —p),7/(p 1), p/(—* - —¢); Ri]
(B >q) > ((—7r—>—9) > (—r—>—p))) -
>(p—>q) > ((—=7>—q) = (P —>7))
[*30, A1 g/((—7 = —q) = (—7 > —p)),
7[((—% = —p) = (p —>1), ¢/(p > 9); Rl
((b—>9) = ((—7—>—q) > (p>7)) [*28,*31; Rq]
(g —=>7) > (—r—>—q)) [*15, p/7]
(—(=r—>—9) >—(@—>7) [*33,*15¢/(g —7), p/(—7 > —q); Ry]
(= >7)>—(—7 > =) > (—(p >7) > —(g >7))
(34, A1 g/—(—7 = —q),7/— (g —>7), p|—(p —7); R1]
(= >7)=>—lg=>n)>(g—>7) > (p—>7))
["13p/(p —7), q/(g - )]
(=7 > —g) = (p =>7) > (—(p >7) > —(—7 > —0q)))
[15¢/(—7 = —q), p/(p - )]
(=7 > =9 = (B =7) > (—(p >7) > —(—r > —¢g))) >
> (=7 >—=9) > >7) > (—(p >7) > —(g >7)))
('35, 81 ¢/(—(p >7) = —(—7 > —q)), 7/(—(p =) > —(g > 7)),
?/((—7 > —gq) = (p —>7)); Rq]
(=7 —>—=q) > (p—=>7) > (—(p >7) > —(g>7))) [*37, *38; Ry]
(=7 >—@) = =>7) > (—(p >1) > —(g>7)) -
= (((=7—>—q) > (p =>7) > ((g >7) > (p >7)))
[36, A1g/(— (B —7) > —(g =), 7/(([g »7) > (p > 7)),
Pl((—7 = —q) = (p = 7)); Ry]
(=7 >—g) > >7)) > (g =7 > (p >7)) [*39, *40; Ry}
(=9 > (—7—>—q) > (p>7)) —~
(=9 > ({g—=>r) = —7r))
(4L, Arg/((—7 > —q) = (p >7),7/((g —7) = (b 7)), $/(p > ) ; Ri]
(2 =>9) = ((g—=7) > (p—>7r)) [*32, *42; Ry].

Using principles of transposition, A; and *43 yield all varieties of Pure
Hypothetical Syllogisms and traditional varieties of Sorites. Such principles
can also be formulated with premisses in conjunction by using the Principle
of Importation, which is derivable in seven steps (using *8, A1, and Ay) from
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*48 below:

*44  ((p.9) > (q-9) [*20 ¢/p, p/q)

*45 (((g.p) &> —7) > ((p.q) ——7)) ['44,%439/(p-9),9/(g-p).7/—7; Ri]

46 (((g.p) > —7) > ((p.9) > —=7) > ((p > —(g-7) > (($.9) > —7))) -
[As, *43 p/(p - —(q.7)), 9/((g-B) & —7). 7/((2-9) = —7); R4]

47 ((p —~—(g.7) =~ ((p-q) > —7)) [*45, *46; Rq]

*48 ((p > —(g.-—7) > (($.9) >——7) (*47 r/—7].

By theorem *52 below, together with Ag, F ((p —¢q)—((p.7) = (¢-7)),
and F((p -¢) = ((p.7) > (r.q))) — which could have been added in
seven steps — we can produce a complete set of associative laws for con-
junction and alternation including ‘(((pv (gv 7)) = (gv (v 7)) and
“((p D (g D7) = (gD (p D7))). We include only the proof of *52 however,
since only *52 is needed in proofs below.

*49 ((g.7) > (r-.9) [*20 p/r]
*50  (((r.p) = (g.7)) = ((r-$) > (r-9)) \
[*49, A1q/(q.7), 7/(r.q), §/(r.$); Ri] R

51 (((p—=>9) = (r-0) > (g.7) > (6 >9) > ((r-7) > (-9
[*50, A1 g/((r-#) — (g-7), 7[((r-B) > (r-9)), 2/ — 9); R4]
52 ((p—>9) ~>((r-p) ~(-9) [Ag, *51; Ra].

From the provable principles above, Leibniz’ Praeclarum Principle, i.e.,
‘WP —q).(r —s)) = ((p.7) > (¢.5)))’, can be derived and from this in
turn all types of Complex Dilemmas follow.

Like most modern formalizations of propositional logic, Pa1 can be
extended to cover many valid arguments of greater complexity than those
handled in traditional logic. But the proofs above suffice to show that Pas
is broad enough in scope to be generally compatible with traditional logic.

4. Completeness of P,, with respect to Principia mathematica.
Every theorem of the propositional calculus in PM is also a theorem in Pas.
First we establish:

(2 (-9)
(2.9 29)
(629> (—(g.n) 2 —(-2))

which constitute an axiom set of Rosser’s [13]; then we show that Pai
contains identical or equivalent rules and elements to those of Rosser’s

system.
The first two of these formulas follow directly from Ag, Ag, and Da.
*53 (pD(p.9) [Ag, D2; Ry]

54 ((p.9) D7) [As, Ds; Ra].
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The third formula, however, requires a longer proof:

*55 (—(g.7) > —(r.9)) [*21 plg, q/7]

56 {(—(g r) —->—(r.g)) >((—(g.7).70) >—q)  [*47 p/—(g.7), g7, 7/q]
*57 ((— (q 7) 7) = —q) [*55, *56; Ry]

S8 ((p.-—(p-—9) > ——q) [(*23 ¢/—q]

59 (— q->—(;b —(? —q))) [*58, As p/(p.—(p.—4)), ¢/—¢; Ra]
60 ((—g—>—@.—@-—9) > (—(@.7).7) >—(p.—(p.—9)))

[*57,*43i>/(—(q-r)-r),q/—q,r/—(zb- —(#-—9); Ri]
61 (((—(g.7).7) = —(p.-—(p.—q)) [*59, *60; Ry)
62 ((p.(—(q.0).71)) > ——(p.—9))
[*61, Az p/(—(g.7).7), g/, r|—(p.—q); Ri]
63 (—(g.7).(0.7) > (p.(—(g.7).7)) [Aap/—(q-—7), ¢/p]
64 (((B-(—(g.1).7) > ——(p-—9)) > (—(g.7).(p-.7)) > ——(p.—9)))
[%63,*43 p/(—(q.7). (. 7)), /(B . (—(g.7).7)),

r/——(p.—q); Ri]
65 ((—(g.7).(p.7)) > ——(p.—q)) [*62, *64; Ry]
66 (—(p.7) > —(r.p)) [*21 g/n]
67 (—=(r.p) > (p.7) [*66,*19g/(p.7), p/—(7.9); Ri]
68 ((—(g.7).——(r.2)) > (—(g.7).(p.7))

(%67, *52 p/——(r.p), q/(p.7), r/—(g.7); Ri]
69 ((—(g.n.(0-1)>——(p.—q) ~((—(g.7). ——(r. ?))—>——(75-—q)))
[*68, *43 p/(—(g. r) ——(r. ), 9/(—(q.7).(p.7)),
7/——(p.—q); R
70 ((—(g.n).——(r.p)) > ——(p —q)) [*65, *69; R1)
71 (—(p.—q) > —(—(g.7). ——(r.9))
[*70, AsP/ g.7).——(.9). 9/—(p.—q); Rq]
72 ((pD9) > (—(g.) D —(r.$))) [*71,Ds; Ry}
13 —((29).-—(—(g.7) > —(r.9)))
72, A7 p/(p D 9), 9/(—(g.7) D —(p.7)); Ry]
74 (D92 (—(g-7)D—(r.8)))  [*73,D3; Ry).

Rosser’s rule of inference “If S and F (S 5 S’), then F S is established
as a derived rule of inference in Pa; by virtue of Ry, Rq, and *76 below:

75 ((p-—(q-—2) > q) [*58, *8 g/(p. —(p.—4q)), #/g; Ru]
76 ((p-(629) —>9) [*75, D2; Ry].

Since all other elements of the Rosser system are contained in P,3, and the
Rosser system has been shown equivalent to the propositional calculus
of PM [[6], Ch. 7], it follows that P4y is complete with respect to PM.
Since the interpretation of ‘D’ is restricted to expressions involving only
conjunction (or alternation) and denial in P,;, the inclusion of the PM
calculus does not entail the inclusion of ‘“‘paradoxes of material, or strict,
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implication.” Theorems in this portion of P43 will contain no logically true
implications and hence indicate no patterns of valid argument ; they consist
solely of logically true disjunctions, alternations, or (rarely) conjunctions,
all of which are categorical, not hypothetical.

5. Additional subjunctive theorems of P,,. Axioms 1-9, and all
theorems derived from these axioms alone, are compatible with PM in the
following sense: if ‘-’ were replaced by ‘2’ at all occurrences, the resulting
formulas would all be theorems in the PM calculus of propositions. In the
same sense, Lewis’s system of “strict implication’ [[10] Ch. VI and Appen-
dix II] and Ackermann’s system of “strenge Implikation” [1] — ignoring
theorems containing modal operators or quantifiers — as well as Heyting’s
intuitionist logic and most other formalized propositional logics are com-
patible with PM when their respective conditional signs are replaced
throughout by ‘D’. Such systems, in short, contain restricted sub-classes
of the conditional theorems sanctioned in PM, without adding any new
theorems. The system Pgj. however, contains in Axiom 10 the source of
an infinite number of theorems which are not provable in PM, and which,
in some cases, are logical contradictories of theorems which would appear
in each of the systems mentioned above.

Consider first the formula ‘—(p — —#)’ which is proved as a theorem
of PA]_I

77 —(p - —p) [*7, A0 g/p; Ra].

Interpreting ‘—’ as the subjunctive “if ... then ...”, as specified in
condition 6, this theorem may be interpreted as asserting “It is false that
if p were true, then p would be false”. Intuitively, this would seem an
appropriate candidate for a logically necessary subjunctive conditional.
But the ‘D'~ for ——’ analogue, ie., ‘—(p D —p)’, is not a theorem
in PM, since ‘—(p D —p)’ is equivalent to ‘——(p.——7)’, hence to p’.
Indeed, “—(If p then —p)” cannot be a theorem in any of the three other
systems (those of Lewis, Ackermann, and Heyting). For in each of these
systems, as well as in PM, one can prove F (If (p.—p) then —(p.—p)),
which is a substitution instance of “If  then —4”’, and is thus inconsistent
with *77. Since Pa; is consistent “((p.—p) - —(p.—9))" cannot be a
theorem in it, whence it follows that Pa; is independent of each of the four
systems mentioned, and also that the treatment of “if ... then ...” in
Pai can neither be reduced to, nor reconciled with, conditionals in these
other systems.

Axiom 10 is considerably stronger than *77, however. It says, in effect,
that if a proposition p implies another, ¢, then $ can not imply the contra-
dictory of ¢g. Three variants of this principle are established below as *78,
*79, and *80:
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78 ((p > —q) > —(p —>q)) [A10, As p/(p —9), ¢/(p > —g); Ri]
79 ((—p =9 > —(—p—>—9q)) [A1o, p/—2]
80 ((—p > —g) > —(—p >9)) (78 p/—p].
From *80, incidently, we get *82, which denies the converse of the con-
ditional in *77:

8l (—p—>—p) [*7 p/—#]
82 —(—p > p) [*81, *80 ¢/p; Ra).

Other variations of the new principle are introduced by laws of transposition.
One variation, like *86 below, says in effect that if an antecedent implies a
certain consequent, that consequent will not imply the contradictory of that
antecedent :

83 (g > —p) > (p > —q) [As p/q, q/p]
84 (—(p > —q) > —(g > —p) ['83,*15¢/(g > —p), p/(p - —q); Ri]
85 ((—(p>—q) > ~(g>—p) >((p >9) > —(g > —p)))

[A10, *432/(p —~9),9/—(p —> —q),7/—(g ~ —$); Ry]
86 ((p—=>q) > —(g > —p)) [*84, *85; R].

A second variation introduced by transposition, says that if a certain
antecedent implies a certain consequent, the denial of the consequent will
not imply the antecedent; e.g., *90 below:

87 ((p>q) > (—q—>—p)) [*15 q/p, p/q]
88 ((—g—~>—p) > —(—g 1) > ((p >q) > —(—q )
("87,*43 p/(p —~ 9), 9/(—q - —p), r/—(—g — $); R4]
89 ((—g = —p) > —(~—g —>p)) [*80 /g, g/#]
90 ((p—>q) > —(—q—~p)) [*89, *88; Ry].

Still another set of principles, like *92 below, is obtained from principles
like A1g, *86, and *90 by inserting the latter as antecedents in *78:

L (B>9) >~ >—9) >—(p>q) > (p > —0q)
[*78, /(6 —q), 9/(p — —q)]
92 —((p>q) > (p >—q)) [A10, *91; Ry].

These principles deny that a conditional can imply another conditional
which has the properties proscribed in the previous principles. Finally,
using Ay we can derive various sets of disjunctive theorems which deny
that certain pairs of conditionals can be true simultaneously. For ex-
ample, *98:

93 ((r-p) > (r.——p)) ("5, *52 g/——p; Rq]
04 (—(r.——p) > —(r.9)) [*93, *15 ¢/(r.$), p/(r.——p); R]
95 ((r > =p) > —(r.——p)) > ((r > —p) > ~(r.1)))

[94, Arg/—(r.——p),7/—(r.p), p/(r > —$); Re]
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96 ((r > —p) > —(r.——p)) [Av, p/r. q/—1)
97 ((r = —p) = —(#.p)) [*96, *95; Ry]
98 —((p—~q).(6 >—9) (A10,"97 p/(p —>q),7/(p > —q); Ra].

That no analogues of these new principles appear in PM can be shown by
replacing the ‘=’ by ‘D’ throughout, then finding the truth-table of each
when the antecedent in the first conditional is false and the consequent in
the first conditional is true. In fact, in PM no conditionals in which either
the consequent or the antecedent is consistent but non-tautological can be
logically incompatible with each other and, indeed, no such conditionals
can be logically false at all.

Our chief purpose in this paper is to establish the consistency of principles
based on Ao with traditional principles based on A1-Ag; but the justification
of adding Ajp must eventually be decided on other grounds. The appro-
priateness of the stronger principles is most easily approached by considering
whether, in ordinary language, the conjunction of ‘If $ then ¢’ and ‘If p
then not ¢” would be considered logically false (as asserted in *98). Provided
the “if ... then ...” is subjunctive, an affirmative answer scems at least
plausible. Surely one would ordinarily say of such pairs of conditionals as

1) If the match had been scratched, it would have lighted

1') If the match had been scratched, it would not have lighted,

2) If we had followed a different policy towards Germany in the 1920s,

the second World War would not have occurred

2’) If we had followed a different policy towards Germany in the 1920s,

the second World War would still have occurred,

that they are conflicting, logically incompatible statements.

While we shall not attempt to establish the point conclusively here, this
position is reinforced by various writers. Nelson [11], in trying to set up
a logic of intension, formulated a postulate set from which he derived both
F—@pE —p)and F((p E q) E —(p E —¢)), where ‘E’ represents “‘entails,”
which was his alternative to the versions of “if ... then ...” in PM and
in Lewis’s “strict implication’ [see [11], p. 449]. More recently, philosophical
analysts appear to believe that ordinary language supports this analysis
of “if ... then ....”. For example, Strawson {14] writes,

“The formulae ‘6 D ¢’ and ‘p D —¢' are consistent with one another,
and the joint assertion of corresponding statements of these forms is
equivalent to the assertion of the corresponding statement of the form
‘—¢’. But ‘If it rains the match will be cancelled’ is inconsistent with
‘If it rains, the match will not be cancelled’, and their joint assertion
in the same context is self-contradictory.” 1

1 P.F. StrawsoN, Introduction to logical theory, p. 85.
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And another writer [7] says,

“It seems clear, though it is perhaps impossible to prove, that two
subjunctive conditionals with the same antecedent and contradictory
consequents cannot both be true.” 2

If one is satisfied with the disjunction in *38, one should have little objection
to the subjunctive hypothetical “If (p — ¢) then —(p — —gq)” of Ayy.

The objection has been raised that such theorems as Ajg, *77, and *98
would eliminate Reductio ad Absurdum proofs. The objection raises ques-
tions, but it is clear that no proof procedure of PM or its logistic foundations
of mathematics would thereby be threatened. For, since P4 is complete
with respect to PM, such laws as Church’s [[5], p. 142],

(D —p)D—p) (Special Law of Reductio ad Absurdum)
(pog)D((pD—9) > —p) (Law of Reductio ad Absurdum),

though not interpretable as involving conditionals, are theorems in Pyy;
and from them, with Rj, Rg, and *76 we can get the derived rules of inference:

If (S>> —S) then + —S

If H(S2S) and F (S > —5’) then F —S.
Further, there is at least one standard schema for Reductio ad Absurdum
proofs, namely,

If p then (¢ and —¢q)
Hence, not #,

which can be formalized as the derived rule of inference in P,y,
If (S (%.-5), then F —S§,

by virtue of Ry, Rg, and ‘—(p.—#)" and (((p = ¢).—¢) - —p)’ which
are theorems in P4;. On the other hand, Pa; does not admit the ‘~'— for
—'D’ analogues of the first two theorems above (let p = 0, ¢ = 0), or of
the related derived rules; but this fact is counted a defect in Paj only if
it is held that non-material conditionals are essential in the proper for-
mulation of Reductio ad Absurdum along the lines of these theorems.

If Axiom 10 and its consequences be admitted, then the traditional
hypothetical theorems established by A; to Ag are supplemented by an
indefinite class of co-related, negative theorems. For example:

From Commutation or Permutation we get,

Y99 —((p-9) > —(g-p) [*20, *86 p/(g.$), 9/(p-9); Ri]
Y100 —(—(p.q) —~ (g-7)) [*21, *80 p/(p.9), 9/(g-#); Rul.

2 P. B. DOoWNING, Subjunctive conditionals, time ovder and causation, Proceedings
of the Aristotelian Society, n.s. vol. LIX (1959), p. 126.
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From Denying the Disjunct we get,

101 —((p.—(#-9) 9 (%23, *78 p/(p. —(b-9). ¢/g; Rul.

And from the principle of the Pure Hypothetical Syllogism we can get,
not only

102 —((p—>q) ~>—g—=>n—>(—7)
[*43, A0 2/(p —9), 9/((g >7) > (p > 7)) Ral,

but also such theorems as

(6 >9 > g —>7—>—@—>—7)
—(p—>9) > (g—=>7—>@—>—7)
(—>q>—(g—>7—>@—>—7))

and so on.

PM has frequently been charged with including too much, e.g., the “para-
doxes of material implication” ; one wonders why it has not been charged
with inability to include analogues of the theorems above.

6. Elimination of “paradoxes” of material and strict implication.
It is agreed that these so-called “paradoxes’ are not really logical paradoxes
at all. In Nelson’s words:

“The so-called paradoxical propositions both of material and of strict
implication are in terms of the respective systems not paradoxes at all.
It is only when we are told that the symbols ‘D’ and ‘3’ represent what
is commonly understood by the word ‘implication’, that these propo-
sitions appear paradoxical.” 3

For this reason, the inclusion of the PM calculus in P43 does not entail
that P contains anything paradoxical. What must be considered, however,
is whether ‘—' does not give rise to analogous paradoxes arising from the
fact that ‘=’ 4s interpreted as “if-then.”

It is easy to show the non-derivability in Pa; of the ‘—»'— for =2’
analogues of any of the PM theorems which Lewis [[9], pp. 325-6 and [10],
pp. 141-5] identified as “‘paradoxes of material implication.” For example,
‘(—p D (p Dg)) has as its analogue ‘(—p — (p —¢))’, and in the truth-
tables given above the latter formula comes out false when p =0, ¢ = 1.

The “‘paradoxes” of Lewis’s system of strict implication were stated by
Lewis to “become explicit” in his four theorems [[10], pp. 174-5]:

1974 —Op.3.p 3 ¢ (“A proposition which is self-contradictory or
impossible, implies any proposition”’)

1975 —O—p.23.9 3 p (“A proposition which is necessarily true is
implied by any proposition’’)

3 EvereTr J. NELSON, Intensional velations, Mind, n.s. vol. 39 (1930), p. 448.
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1976 —(p 3 q) 3 Op (“If there is any proposition ¢ which $ does not
imply, then p is self-consistent or possible”)
1977 —(q 3 ) 3 O—p (“If there is any proposition ¢ which does not
imply p, then p is possibly false”).
Since Pa; does not contain modal operators, we shall handle these four
“paradoxes” in terms of four implied meta-logical assertions. Taking
theorems of logic as “necessary,” and denials of theorems as “impossible,”’
we construe 19.74 to 19.77 as implying, respectively, the following meta-
logical assertions with respect to Pap:
1) Every wif of the form (S — S'), where S is the denial of a theorem and
S’ is any wif whatever, is a theorem. ,
2) Every wif of the form (S — S'), where $' is a theorem and S is any wif
whatever, is a theorem.
3) If some wif (S — ') is not a theorem, then —S is not a theorem.
4) If some wif (S —S’) is not a theorem, then S’ is not a theorem.

These assertions are proved false of Py by the following counter-
examples: 1) Let S be ‘—(p — )’ and S’ be ‘¢’; 2) Let S’ be “(p —py
and S be ‘q’; 3) Let S be ‘(p > —p)’ and S’ be ‘¢’; 4) Let S be ‘g’ and S’
be “(p - p)".

More generally, consideration of the matrix for ‘—’ in section 2 shows
that #o theorem is implied by every proposition and 7o denial of any
theorem implies every proposition. Indeed, consideration of Ajo and *98
makes it plain that no well-formed formula, theorem or not, can imply every
proposition in Pyj.

While the discussion above proves that P,y does not include all para-
doxes of material and strict implication, and does not include any of those
particular “paradoxes” which Lewis (and others) consider central and most
significant, it has not been established that P,; does not include any such
“paradoxes.” The proof of the latter, however, could only be established if
the notion of such “paradoxes” were formulated in purely formal terms.
As the “paradoxes” are semantic rather than formal, this seems an unlikely
prospect. (For two attempts at partial formalization see Anderson [2] and
Belnap [3]).

Other evidence that Pa; avoids the “paradoxes of implication” lies in the
fact that certain formulas, described by some as the “sources” of these
paradoxes, are non-derivable in Pa;. These are discussed in the following
section,

7. Residual problems. It can be argued that Py is superior to
standard calculi as a logic of propositions in that 1) it retains the full
deductive power of PM, requiring only a generally accepted restriction of
interpretation, 2) it includes the major principles of traditional logic which

s

involve “if ... then ...,” 3) it clears up the awkward ‘“paradoxes”, and
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4) it includes a set of additional principles which appear compatible with,
and perhaps necessary for, the interpretation of the conditional sign as
subjunctive. Though Pj; is not as elegant as some standard calculi, it
can be urged that this is outweighed by its extended suitability (i.e., for
informal uses of “‘if-then,” as well as for the tasks served by PM).

But all this is not enough. Residual problems arise concerning whether
certain formulas should be theorems but are not, or whether others should
not be theorems though they are. The most obvious of these we discuss
below. In certain cases we defend Pa;, but there are certain results which,
in this writer’s opinion, make P4y less than completely satisfactory.

Each of the wifs below are analogues of theorems in PM and related
systems, and they have been advanced not solely as syntactical conveniences
but also as representing analytic truths in ordinary language.

(1) Simplification: ((p. q) — ) [p=0,¢g=0]

(2) Contrapositive of (1): (— —(p.9)) [p=0,9g=0]

(3) Exportation: ( (;b 9) >7) > —>g—>7) [p=049¢=0r=1]
(4) Assertion: @—~>((t—~9—>9) [p=0,¢=0]

(5) Commutation: (p=>(@—=7)>(q@=>@p—>7) p=1,9¢=0,r=0]
(6) Adjunction: &g (?-9)) [p=0,g=0]

(7) Tautology: ®—~(#-) [p=0l.

None of these formulas is a theorem in Pa1, as value assignments on the

right show.

The omission of (1), Simplification, is necessary; for with ‘—’ in place
of ‘¢’ Simplification would conflict with *98 by producing both ‘((p. —$) =)’
and ‘((p.—p) - —p)’, and with Transposition (*15) and Az it would yield
the “paradox,” ‘((p.—p) —¢)’. Apart from such consequences, it could be
argued that Simplification is not universal because ‘ If (5. —p) were true
then $ would be true,” is not an inescapable logical truth; should someone
assert ‘‘p and not p” we should scarcely assert that the truth of p was
implicitly intended. Along different lines, Nelson argued that $ is not
implied by p and g (which should be viewed as a whole) but only by one
component, p, with respect to which ‘and ¢’ is superfluous [[11], pp. 44748];
this suggests a notion of “if-then,” apparently compatible with P43, in
which one component is properly said to be a condition of another only if
all parts of the antecedent are directly or indirectly contributory to the
consequent. Whether such arguments will stand up under continued
philosophical analysis may be questioned, but they clearly suggest the
possibility of reasons, other than syntactical, for excluding Simplification.
This suggestion may be rendered more palatable by the reminder that
Py still retains, by virtue of *54 and *76, the derived rule of inference,
“If F(S.S"), then FS',” and thus its deductive power is not lessened with
respect to PM.
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It might be argued that Simplification should be excluded, but its contra-
positive, (2) (—p - —(p.¢)), admitted; since it seems inescapable that
if $ were false, then the conjunction of  with anything else would have to
be false. If this were granted then we should get, as well,

8 (—p—=(>29) ) (> (—p29) (10) (p>(gvp), etc,

which are not in themselves “paradoxes” since ‘D’ is not interpreted as
“if-then.” But to get these and exclude Simplification we should have to
eliminate As and replace As by ‘((—p —>¢) = (—¢ —$))’. This would
lead to the exclusion of an even larger class of generally accepted theorems.

The Principle of Exportation would make ‘—' equivalent to material
implication, and this would lead to inconsistency.

@ (29 ——(p-—9q) [*7, #/—(p.—q), D2; Ry]
i) (po9).p) >——9) [(i), 48 p/(p D q), 9/p. 7/q; Ru]
(i) ((p>29)-) =9 ((i1), *8 g/((# 2 9).9), #/9; Ry]
(iv) (((p29).-9) >9—=((p D9 = >9))
[Exportation, p/(p D q), 9/p, 7/q]
v) (po9) = (p—>9) [(i), (ui); Ry]
(vi) ((p—=>9 —>(>D9) [A7, D2; Ry).

But the omission of Exportation apparently presents little difficulty as it
is non-derivable in the systems of Ackermann, Burks, Nelson, and Lewis,
and little or no objection has been raised.

Somewhat more difficult to defend is the omission of (4) Assertion and
(5) Commutation. We consider these together since, given either one, the
other may be derived in a few steps, using *43 with Assertion to get Com-
mutation, or *7 [with p/(p — ¢)] and Commutation to get Assertion. Though
independent of P,j, it is not clear that these two are incompatible with it;
their non-inclusion is based partly on the fact that the writer has found
no proof of their compatibility with A; to Aje. Assertion appears attractive
because it parallels certain formulations of the rule Modus Ponens. But
in Pa1 the theorem, ((p - ¢) — (p —¢q))’ [by *7 p/(p — ¢)], is quite as
serviceable. The statement, “If (p — g) were true, then if » were true,
g would be true,” is as adequate for that purpose as “If p were true, then
if (p — g) were true, then ¢ would be true.”” As for Commutation, we shall
see below that while its admission with A; to Ajg might be consistent, its
admission with (6) Adjunction — in many ways a more desirable formula —
would reduce ‘—’ to material implication.

There are some serious disadvantages to the omission of (6) Adjunction,
Its exclusion is responsible for the presence of the rule of transformation, R,
which would be unnecessary if Adjunction were a theorem. Also, if Adjunc-
tion were included, hypothetical formulations of ‘‘denying the alternant”
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and related principles would result by way of Transposition and Syllogism:

(1) > (—-9) > —9)s (12) (=2 > (V9 —>9),
(13) =229 —=9)

Finally, like (7), Adjunction has a strong intuitive appeal as an analytic
truth. Although the independence of these principles is clear, the
writer has found no proof that they are incompatible with P4;. What is
clear, however, is that if Adjunction were admitted, Commutation and
Assertion could not be. For from (13) above and Commutation we would
get (29 = —>9)

The omissions just discussed are not as serious as they might appear
for several reasons. In the first place, the ‘D’—for —"—’ analogues of
(1)—(13) appear as theorems in P41 with only a restriction on interpretation,
Secondly, derived rules of inference in which such theorems act as premisses
will be coextensive with such rules for PM. And finally, many of the excluded
formulas have close approximations among the theorems of Pa;; eg.,
Pa1 lacks Exportation but includes ‘(((p.q) > 7) = (p > (gD 7)) as a
theorem. But while these considerations mitigate the difficulties they do
not remove them. And in addition there are formulas which appear as
theorems which might be subject to objections similar to those used to
justify omissions above. For example, by substitution of ‘4’ for ‘¢’ in *23
we get ‘((p. —(p.p)) = —2) as a theorem. While this is far removed from
the ““paradoxes,” it might be criticized on the grounds that there is no
particular reason why the inconsistent antecedent should “imply’” the
particular consequence it does.

The difficulties just discussed might conceivably be argued away, but
they seem sufficient to this writer to show that P,; is not a completely
satisfactory formalization of the logic of propositions, whether or not it is
more so than present alternatives.

Apart from merits or defects of P41, however, its existence demonstrates
the feasibility of a new approach to the logic of propositions involving the
principle of subjunctive contrariety. We thus have good reason to investigate
the effect this principle, and a concept of conditionality compatible with
it, might exert if introduced into standard quantification theory, into set
theory, into modal logic and into epistemology and the philosophy of
science.
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